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a b s t r a c t

In this work, we derive a discrete action principle for electrodynamics that can be used to
construct explicit symplectic integrators for Maxwell’s equations. Different integrators are
constructed depending on the choice of discrete Lagrangian used to approximate the
action. By combining discrete Lagrangians in an explicit symplectic partitioned Runge–
Kutta method, an integrator capable of achieving any order of accuracy is obtained. Using
the von Neumann stability analysis, we show that the integrators greatly increase the
numerical stability and reduce the numerical dispersion compared to other methods. For
practical purposes, we demonstrate how to implement the integrators using many features
of the finite-difference time-domain method. However, our approach is also applicable to
other spatial discretizations, such as those used in finite element methods. Using this
implementation, numerical examples are presented that demonstrate the ability of the
integrators to efficiently reduce and maintain a minimal amount of numerical dispersion,
particularly when the time-step is less than the stability limit. The integrators are therefore
advantageous for modeling large, inhomogeneous computational domains.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Many numerical methods have been developed to simulate the dynamics of electromagnetic fields, such as the finite-dif-
ference time-domain (FDTD) method [1,2] and the time-domain finite element method (TD-FEM) [3]. Typically these meth-
ods integrate Maxwell’s equations by approximating the time derivatives with second-order accurate Taylor expansions.
These integration methods, along with the spatial discretization, can lead to significant numerical dispersion [2,3], where
waves propagate with a wavelength dependent velocity through the computational domain. This causes phase errors, pulse
broadening, as well as other problems. In order to reduce the numerical dispersion, higher order approximations to the
derivatives are often used. In the context of FDTD, these methods are typically applied to the spatial derivatives [4]. However,
they can also be applied to the time derivatives [5], as long as care is taken so that the dynamical invariants of the problem
. All rights reserved.
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(e.g. the energy density) are preserved. One type of time integrator that preserves dynamical invariants up to a desired order
of accuracy is a symplectic integrator (SI) [6–19]. SIs for Maxwell’s equations have appeared before [20–22] in the context of
Hamiltonian mechanics. Some of these schemes [20–22] have been derived using a ‘‘helicity” Hamiltonian [23], which is not
the physical energy density, but nonetheless is equivalent to Maxwell’s equations. However, it is of interest to develop
numerical approaches based on physical premises so they can be easily extended to more complex situations, such as the
coupling of electromagnetics with quantum mechanics [24]. Another scheme [21] was derived using a physical Hamiltonian.
However, the SIs developed have limited applicability due to the constraints imposed on the Hamiltonian. In this paper, we
take a different approach and use Lagrangian mechanics to derive a discrete action principle for electrodynamics that can be
used to construct a variety of SIs. Our approach is based on the discrete variational integration ideas developed by Marsden
and West [25], which have recently been applied by Qin and Guan to describe charged particle motion in magnetic fields
[26]. We extend their ideas from particle Lagrangian mechanics to a field theory in terms of a Lagrangian density [7]. We
then use the physically correct Lagrangian density to develop SIs for a larger class of problems in electrodynamics than pos-
sible using previous approaches. Even though the Lagrangian density is in terms of potentials, we show that the integrators,
after construction, can easily be expressed and implemented entirely in terms of fields.

The structure of this paper is as follows: in Section 2, we review Maxwell’s equations and extend the discrete action prin-
ciple to a field theory; in Section 3, we construct SIs for Maxwell’s equations, including an integrator capable of achieving any
order of accuracy; the numerical stability and dispersion of the SIs are analyzed in Section 4; practical implementation of the
SIs using FDTD techniques is discussed in Section 5; in Section 6, we present numerical examples; lastly, a summary and
conclusions are given in Section 7.
2. A discrete action principle for electrodynamics

The dynamics of electromagnetic fields are described by Maxwell’s equations, which in differential form for a linear med-
ium are
e
@

@t
~E ¼ 1

l
~r�~B�~J; ð1Þ

@

@t
~B ¼ �~r�~E; ð2Þ

~r � ðe~EÞ ¼ q; ð3Þ
~r �~B ¼ 0; ð4Þ
where~E and~B are the electric and magnetic fields, e and l are the permittivity and permeability of the medium, and~J and q
are the current and charge densities.

Lagrangian mechanics can also be used to describe the dynamics of electromagnetic fields, by using the vector ð~AÞ and
scalar (/) potentials, which are related to ~E and ~B by
~B ¼ ~r�~A; ð5Þ

~E ¼ � @

@t
~A� ~r/: ð6Þ
The Lagrangian density, L, for the electromagnetic field is expressed as
L ¼ e
2
~E �~E� 1

2l
~B �~Bþ~J �~A� q/ ð7Þ
or
L ¼ e
2
@

@t
~Aþ ~r/

���� ����2 � 1
2l
j~r�~Aj2 þ~J �~A� q/; ð8Þ
where L is a function of~A; @~A=@t, and /. It is important to note that L, as written, does not contain a conjugate momentum to
/, o//@t, which arises by fixing the gauge (for certain choices) [27], and would be necessary in order to develop an integrator
in terms of potentials. However, our desired integrators are in terms of gauge invariant fields, and therefore this step is
unnecessary (see Section 3). Eqs. (1) and (2) arise from requiring that the action be stationary,
d
Z

dt
Z

d3xL ¼ 0; ð9Þ
where x, y, z, and t are independent variables, and variations are taken with respect to / (and o//@t for certain gauge choices),
each component of ~A and @~A=@t, and the spatial derivatives that enter into ~r/ and ~r�~A.

Marsden and West showed that, given a suitable Lagrangian, it is possible to form a symplectic integration scheme based
on a discrete form of the action principle [25]. Their development was in terms of particle Lagrangian mechanics, but it is
straightforwardly generalized to a field theory using a Lagrangian density as follows. Eq. (9) is first approximated as



J.M. McMahon et al. / Journal of Computational Physics 228 (2009) 3421–3432 3423
d
X

n

Z
d3xLdðn; nþ 1Þ ¼ 0; ð10Þ
where Ld(n,n + 1) is an approximation to the time integral of Eq. (8) over a small time interval, h, from time t = tn to tn + h,
Ldðn;nþ 1Þ �
Z tnþh

tn

dtL: ð11Þ
Within each interval, the functions to be varied are / and the components of~A at times tn and tn + h, which we will denote by
/n; /nþ1; ~An, and~Anþ1, as well as the spatial derivatives that enter into ~r/n; ~r/nþ1; ~r�~An, and ~r�~Anþ1. All variations are
treated in the standard manner of variational calculus. The components~An and~Anþ1 allow @~A=@t to be approximated by relat-
ing each of component of d~Anþ1 to d~An (and similarly for / for certain gauge choices). Requiring that the variation with re-
spect to Aa be zero, where a = x, y, or z, leads to
d

dAn
a

Ldðn; nþ 1Þ þ d

dAn
a

Ldðn� 1;nÞ ¼ 0; ð12Þ
where variational derivatives are involved,
d

dAn
a

Ldðn; nþ 1Þ ¼ @

@An
a

Ldðn;nþ 1Þ �
X

b

@

@b
@

ð@An
a=@bÞ

Ldðn;nþ 1Þ; ð13Þ
where b = x, y, or z. It is not hard to show that Eq. (12) remains satisfied in the course of time iterations n = 0,1, . . . if the
variables
Pn
a ¼ �

d

dAn
a

Ldðn;nþ 1Þ ð14Þ
and
Pnþ1
a ¼ d

dAnþ1
a

Ldðn; nþ 1Þ; ð15Þ
are the discrete momenta canonically conjugate to Aa. Eqs. (14) and (15) can be used to generate SIs, and are analogous to the
equations developed by Marsden and West [25], except that they include functional derivatives.

3. Symplectic integrators

SIs can be constructed in many ways using the ideas presented in Section 2 [25]. One method is to choose a form for the
discrete Lagrangian, the simplest of which for Eq. (8) is
Ldðn;nþ 1Þ ¼ h
e
2

~Anþ1 �~An

h
þ ~r/nþ1

�����
�����
2

� 1
2l
j~r�~Anþ1j2 þ~J �~Anþ1 � q/nþ1

8<:
9=;: ð16Þ
The discrete momenta, Eqs. (14) and (15), of ~A are
~Pn ¼ e
~Anþ1 �~An

h
þ ~r/nþ1

 !
; ð17Þ

~Pnþ1 ¼ e
~Anþ1 �~An

h
þ ~r/nþ1

( )
� h

1
l
~r� ~r�~Anþ1 �~J

� �
; ð18Þ
which can be re-arranged to give the update ð~Pn;~AnÞ ! ð~Pnþ1;~Anþ1Þ,
~Anþ1 ¼ ~An þ h
~Pn

e
� ~r/nþ1

( )
; ð19Þ

~Pnþ1 ¼~Pn � h
1
l
~r� ~r�~Anþ1 �~J

� �
: ð20Þ
As was noted previously, without gauge fixing [27] an update equation for / cannot be derived from Eq. (16), and thus the SI
in Eqs. (19) and (20) is incomplete. However, in terms of gauge invariant fields, a complete SI can be obtained by taking the
curl of both sides of Eq. (19) and noting that Eqs. (6) and (17) imply that ~P ¼ �e~E,
~Bnþ1 ¼~Bn � h~r�~En; ð21Þ

~Enþ1 ¼~En þ h
e

1
l
~r�~Bnþ1 �~J

� �
: ð22Þ
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It is important to note that, despite the appearance and context of Eqs. (21) and (22), ~E and ~B are not canonically conjugate
variables.

Eqs. (21) and (22) represent a simple, first-order accurate in time propagation scheme for Maxwell’s equations derived
from a discrete Lagrangian approximation to the physically correct Lagrangian density. These equations are similar to the
leapfrog method, which is symplectic, often used in FDTD and TD-FEM, except that the fields are not staggered in time. High-
er order integration schemes can be constructed using more complex discrete Lagrangians, although they are often implicit.
However, discrete Lagrangians can also be combined to give a new discrete Lagrangian of higher order or some other desired
property [26,28], from which an explicit SI can be derived. A simple way to do this is to use an explicit symplectic partitioned
Runge–Kutta (pRK) method [10,13,14], which we have generalized to describe field theory problems below. In this approach,
a given time-step is broken up into r stages, and the canonical variables A and P, which include, but are not limited to the
vector potential and conjugate momentum, are updated as
Table 1
Select c

Method

SI.1
SI.2

SI.3

SI.4

a Ref
b Ref
c Ref
Ajþ1 ¼ Aj þ hbjð@A=@tÞj; ð23Þ
Pjþ1 ¼ Pj þ h~bjð@P=@tÞjþ1 ð24Þ
for j = 1, . . .,r, where
ð@P=@tÞj ¼ d

dAj
L; ð25Þ

Pj ¼ d

dð@A=@tÞj
L; ð26Þ
and the coefficients bj and ~bj must satisfy certain conditions in order for the pRK method to be symplectic and explicit
[13,14]. Note that the time derivative (@A/@t)j appearing in Eq. (23) is obtained by solving (the implicit) Eq. (26). The SI in
Eqs. (23) and (24) updates the initial values (P1,A1) at time tn to their final values (Pr+1,Ar+1) at time tn + h. The coefficients
bj and ~bj exist for any order of accuracy, and have been derived by numerous authors [6–19]. Table 1 shows a small selection
of these coefficients.

For the Lagrangian density in Eq. (8), the explicit pRK method is
~Ajþ1 ¼ ~Aj þ bjh
~Pj

e
� ~r/jþ1

( )
; ð27Þ

~Pjþ1 ¼~Pj � ~bjh
1
l
~r� ~r�~Ajþ1 �~J

� �
; ð28Þ
from which a discrete Lagrangian for each step can be identified as
Ldðj; jþ 1Þ ¼ h
1
bj

e
2

~Ajþ1 �~Aj

h

 !
þ ~r/jþ1

�����
�����

2

þ ~bj �
1

2l
j~r�~Ajþ1j2 þ~J �~Ajþ1 � q/jþ1s

� �8<:
9=;: ð29Þ
If r = 1, Eqs. (27)–(29) are equivalent to Eqs. (16), (19), and (20). For r – 1, Eqs. (27)–(29) are equivalent to a composition of
symplectic Euler steps (SI.1) scaled by bj and ~bj, a general result for every explicit symplectic pRK method [13,29]. Again,
oefficients for the explicit pRK method, Eqs. (23) and (24).

Order Coefficients Comments

1 b1 ¼ 1; ~b1 ¼ 1 Symplectic Euler
2 b1 ¼ 0; b2 ¼ 1; ~b1 ¼ ~b2 ¼ 1=2 Ruth’s symplectic leapfroga

3 bj ¼ ~b4�j McLachlan and Atela’s
~b1 ¼ 0:9196615230173999 optimal third-order methodb

~b2 ¼ 0:25=~b1 � ~b1=2; ~b3 ¼ 1� ~b1 � ~b2

4 b7�j ¼ ~bj j ¼ 1; . . . ;6 Gray and Manolopoulos’
~b1 ¼ 0:2167979108466032 fourth-order methodc

~b2 ¼ �0:0283101143283301
~b3 ¼ 0:3901418904713324
~b4 ¼ �0:2414087476423302
~b5 ¼ 0:5908564573813148
~b6 ¼ 0:0719226032714098

. [8].

. [12].

. [19].
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without gauge fixing [27] an update equation for / cannot be derived from Eqs. (27) and (28), but a complete SI in terms of~E
and ~B can be obtained by taking the curl of both sides of Eq. (27) and using the relation ~P ¼ �e~E,
~Bjþ1 ¼~Bj � hbj
~r�~Ej; ð30Þ

~Ejþ1 ¼~Ej þ h~bj
1
e

1
l
~r�~Bjþ1 �~J

� �
: ð31Þ
It is interesting to note that Eqs. (30) and (31) could have been derived by treating~E and~B as canonically conjugate vari-
ables, and applying the pRK method directly to Eqs. (1) and (2) using a ‘‘helicity” Hamiltonian [23], similar to Ref. [20]. How-
ever, as noted before, it is very important to realize that ~E and ~B are not canonically conjugate variables with respect to a
Hamiltonian that corresponds to the physical energy density. A SI derived on the basis of a ‘‘helicity” Hamiltonian is only
guaranteed to preserve ‘‘helicity”, and not the physical dynamical invariants, up to a desired order of accuracy. Only by arriv-
ing at Eqs. (30) and (31) using the physically correct Lagrangian density for the electromagnetic field and true canonical vari-
ables, ~A and @~A=@t, have we been able to show that the physical dynamical invariants are preserved. In addition, our
approach of developing SIs using the physically correct Lagrangian density allows us to extend these principles to other
problems, such as the coupling of quantum mechanics and electrodynamics [24], which typically occurs through a Lagrang-
ian density for the combined system.
4. Numerical stability and dispersion

A fundamental source of error in numerical methods is that waves propagate with a wavelength-dependent velocity,
known as numerical dispersion. For spatially discretized domains, the dispersion also depends on the propagation direction
[2,30]. In addition, explicit methods are limited to a maximum stable time-step [31], hmax. Both of these issues can be ana-
lyzed using the von Neumann stability analysis [5], which below we apply to the SIs developed. For simplicity we consider a
source free region ð~J ¼ 0Þ, and rewrite Eqs. (30) and (31) in matrix form,
~Bnþ1

~Enþ1

" #
¼

Y1

j¼r

½I� ½0�
ðh~bj=elÞ½C� ½I�

" #
½I� ð�hbjÞ½C�
½0� ½I�

� � !
~Bn

~En

" #
; ð32Þ
where the field vector contains all Cartesian components,
~Bn

~En

" #
¼ ½Bn

x Bn
y Bn

z En
x En

y En
z �

T
: ð33Þ
[I] is the 3 � 3 identity matrix, and [C] is a matrix containing the spatial operations from the curl operator,
½C� ¼
0 �@=@z @=@y

@=@z 0 �@=@x

�@=@y @=@x 0

264
375: ð34Þ
It is important to note the order of matrix multiplication in Eq. (32). Eigenmodes of the continuous Eqs. (1) and (2), are as-
sumed to be of the form
~Bn

~En

" #
¼ fn exp½iðkxxþ kyyþ kzzÞ�

~B0

~E0

" #
; ð35Þ
where ka (a = x, y, or z) are the components of the spatial wavevector, and the time dependence of the mode is contained in
the phase factor f, which analytically is exp(�ixh), where x is the angular frequency, and gives information on both the
numerical stability and dispersion. Inserting Eq. (35) into (32) and rearranging gives
f
~B0

~E0

" #
¼

Y1

j¼r

½I� ½0�
ðh~bj=elÞ½~C� ½I�

" #
½I� ð�hbjÞ½~C�
½0� ½I�

" # !
~B0

~E0

" #
; ð36Þ
where
½eC � ¼ 0 �fz fy

fz 0 �fx

�fy fx 0

264
375 ð37Þ
and fa is the result of applying the operations in Eq. (34) on (35), which depends on the spatial discretization. For example,
for grid-based central discretizations
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fa ¼ 2i
sinðkaDa=2Þ

Da
: ð38Þ
Eq. (36) is an eigenvalue equation with eigenvalues f, and while it is possible to solve by hand for low stage numbers, r, the
analysis can become quite extensive as r increases, and Maplesoft Maple 9.5 was used to obtain expressions for f when r > 2.

4.1. Numerical stability

If |f| > 1, then the eigenmode, Eq. (35), increases in powers of n, and the method is unstable. Therefore, to find the stability
limit Eq. (36) is solved for h with the condition |f| 6 1. Numerically, by rearranging the expressions so-obtained for h, it is
found, for all SIs discussed, that
h 6 iC
el

f 2
x þ f 2

y þ f 2
z

 !1=2

; ð39Þ
where C is a stability coefficient that depends on the integrator. It is important to note that Eq. (39) appears to be imaginary,
but the spatial discretization functions, fa, are imaginary which makes the expression real. For example, using the SI.2 coef-
ficients and Eq. (38), C = 2 and Eq. (39) gives the stability limit of the FDTD method [2]. Stability coefficients for the SIs from
Table 1 are shown in Table 2. The high-order integrators are seen to greatly increase the stability limit allowing much larger
time steps, with SI.4 giving an increase of �4.12 times SI.1 and SI.2. However, this increase in stability comes at the expense
of increased computational effort (multiple steps), and the efficiencies, in comparison to the single step methods and FDTD,
are also shown in Table 2. Even though there is a slight decrease in efficiency, the following section shows there is a great
reduction in numerical dispersion.

4.2. Numerical dispersion

After one time-step (n ? n + 1), Eq. (35) shows that the phase of the eigenmodes, f, will be rotated in the complex plane
by an angle determined by xh. The amount of rotation using numerical methods will differ from the analytical form, with a
difference that depends on x for a fixed h, leading to numerical dispersion. We numerically find, for all the SIs with r-stages
that we have considered, that
ReðfÞ ¼ 1�
Xr

j¼1

cjgj; ð40Þ
where cj are the numerically determined coefficients that depend on the integrator, and
g ¼ � h2

el

 !
ðf 2

x þ f 2
y þ f 2

z Þ: ð41Þ
Values of the coefficients for the SIs from Table 1 are shown in Table 3. Considering an exact spatial discretization, so the
dispersion due to the SIs alone can be studied, Eq. (41) becomes
g ¼ h2

el

 !
ðk2

x þ k2
y þ k2

z Þ ¼
h2

el

 !
k2 ¼ ðxhÞ2; ð42Þ
where k = x(el)1/2 is the wavevector magnitude. It is important to note that significant additional dispersion arises from the
spatial discretization, which can be independent from the time integration method, such as intrinsic velocity anisotropy in
FDTD [30]. From Eq. (42), it is seen that Eq. (40) is essentially a truncated Taylor expansion for cos(xh), which is the ana-
lytical form of Re(f) in Eq. (35). Fig. 1 shows Eq. (40) and cos(xh) plotted over the range 0 6xh 6 p for the SIs in Table
1. High numerical dispersion is seen to occur using the low-order SIs, SI.1 and SI.2, especially for high x, which is seen to
significantly decrease by using the high-order SIs. Calculated values of the maximum and average errors of each SI are shown
y coefficients for Eq. (39), and the efficiency in comparison to SI.1. The FDTD method is included in this table as discussed in the text.

Stability coefficient (C) Number of full steps Efficiency

2.000000000 1.0 1.000
2.000000000 1.0 1.000
2.000000000 1.0 1.000
4.520089519 3.0 0.753
8.240410106 6.0 0.687



Table 3
Coefficients for Eq. (40), and the maximum and average errors associated with the SIs rotation of the real part of the eigenmode phase compared to the
analytical form, cos(xh), over the range 0 6xh 6 p.

Method Coefficients (cj) Max. error (%) Average error (%)

SI.1 c1 = �0.5 293.47939 32.53317
SI.2 c1 = �0.5 293.47939 32.53317

SI.3 c1 = �0.5 8.93847 0.96005
c2 ¼ 0:041�6
c3 = �0.001076073122

SI.4 c1 = �0.5 0.00393 0.02687
c2 ¼ 0:041�6
c3 = �0.001365305423
c4 = 0.00002133566312
c5 = �0.0000001495359056
c6 = 0.0000000003017236690
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Fig. 1. SI rotation of the real part of the eigenmode phase after a single time-step in comparison to the analytical form, cos(xh), over the range 0 6xh 6 p.
The inset shows an expanded view of the high xh region.
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in Table 3, where for example, it is seen that the average error using SI.4 is only 0.027% compared to 32.533% with SI.1 and
SI.2.

5. Practical implementation using FDTD techniques

For the SIs to be practically useful, the spatial domain must be discretized, boundary conditions must be applied, and ini-
tial waves of arbitrary form must be easily introduced into the system. These are extremely important issues that are often
not considered when new numerical approaches for solving Maxwell’s equations are developed. The modern forms of the
FDTD method [2] effectively deal with these issues, thus accounting for its continued popularity. In this section, we describe
how such techniques can be used for implementation of our integrators.

5.1. Spatial discretization

For a numerically accurate solution, it is crucial that the spatial discretization allows~E and~B to satisfy Eqs. (3) and (4), as
well as the appropriate boundary conditions across material interfaces. One suitable discretization is with the Yee spatial
lattice [1], where~E and~B circulate each other on a Cartesian grid, and the spatial derivatives are approximated using Taylor
expansions.

5.2. Boundary conditions

Even when simulating infinite domains, the computational domain must be truncated. However, many techniques have
been developed to mimic open regions of space. One of the most successful techniques is to truncate the domain with arti-
ficial materials that absorb nearly all incident waves, called perfectly matched layers (PML) [32], which simulate an infinite
extent along the truncation direction. Neglecting reflection errors from the PML [2], the interior numerical solution (i.e. not
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inside the PML) is unaffected. An efficient and accurate way of implementing PML with the Yee spatial lattice is to use con-
volutional PML (CPML) [33].

The implementation of CPML involves stretching the spatial derivatives in the curl operators and superimposing time-
dependent functions, ~U and ~W, onto them. In a region of CPML, Eqs. (30) and (31) become
~Bjþ1 ¼~Bj � hbjð~rs �~Ej þ ~UjÞ; ð43Þ

~Ejþ1 ¼~Ej þ h~bj
1
e

1
l
~rs �~Bjþ1 þ ~Wjþ1 �~J

� �
; ð44Þ
where ~rs� is a curl operator with stretched spatial derivatives,
~rs �~F ¼ x̂
1
jy

@Fz

@y
� 1

jz

@Fy

@z

� �
þ ŷ

1
jz

@Fx

@z
� 1

jx

@Fz

@x

� �
þ ẑ

1
jx

@Fy

@x
� 1

jy

@Fx

@y

� �
; ð45Þ
where ja (a = x, y, or z) is a scaling factor that increases from 1 at a = 0 to ja,max at a = da, where da is the depth of the CPML in
the a-direction. Various formulas exist for ja [2], one of the most successful being polynomial grading with CPML depth [34],
ja ¼ 1þ ðja;max � 1Þ a
da

� �m

ð46Þ
where m is the polynomial order. The functions ~U and ~W are given by
~U ¼ x̂ðUx;y;z �Ux;z;yÞ þ ŷðUy;z;x �Uy;x;zÞ þ ẑðUz;x;y �Uz;y;xÞ; ð47Þ
~W ¼ x̂ðWx;y;z �Wx;z;yÞ þ ŷðWy;z;x �Wy;x;zÞ þ ẑðWz;x;y �Wz;y;xÞ; ð48Þ
and are updated by the equations
Ujþ1
a;b;c ¼ w1;aU

j
a;b;c þw2;a

@

@b
Ejþ1

c ; ð49Þ

Wjþ1
a;b;c ¼ w1;aW

j
a;b;c þw2;a

1
l

@

@b
Bjþ1

c ; ð50Þ
where a, b, c = x, y, or z, and
w1;a ¼ exp � ra

e0ja
þ aa

e0

� �
Dh

� �
; ð51Þ

w2;a ¼
ra

raja þ j2
aaa
ðw1;a � 1Þ; ð52Þ
where Dh ¼ h~bj for the coefficients in Eq. (49) and Dh = hbj for the coefficients in Eq. (50). Polynomial gradings for ra and aa
are given by
ra ¼ ra;max
a
da

� �m

; ð53Þ

aa ¼ aa;max 1� a
da

� �ma

; ð54Þ
where the polynomial order ma is independent from m. Eqs. (53) and (54) show that ra increases from 0 at a = 0 to ra,max at
a = da, and aa decreases from aa,max at a = 0 to 0 at a = da. Optimum parameters for da, m, ma, ja, ra, and aa are simulation
dependent, but for general FDTD simulations effective parameters have been found to be da � 10Da, m = 3 or 4, ma = 1,
7 < ja,max < 20, 0.15 < aa,max < 0.3, and 0.8ra,opt < ra,max < 1.4ra,opt [2,34], where
ra;opt �
0:8ðmþ 1Þ

Da
e0

er;efflr;effl0

 !1=2

; ð55Þ
Da is the grid spacing in the a-direction, and er,eff and lr,eff are the effective relative permittivity and permeability of the
CPML (e.g. the mean values). For a complete discussion of CPML, including derivations of Eqs. (43)–(55), see Refs. [2,33].

5.3. Initial conditions

Given suitable initial conditions defined everywhere in the computational domain, the SIs will properly evolve the fields
according to Eqs. (1) and (2). However, defining computational domains for initial conditions with large spatial extent is
often inefficient and unnecessary. A more efficient technique to introduce fields into the computational domain, particularly
with the Yee spatial lattice, is to use the total field–scattered field (TF–SF) technique [35–37]. The implementation of this
involves splitting the computational domain into two regions, an interior total field region and an exterior scattered field
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region. The SIs can be used directly in each region without modification. However, near the boundaries, where the spatial
derivatives extend into both regions, the fields are modified using the (known) incident field, so that all equations are
consistent.
6. Numerical examples

In this section, we present numerical examples that demonstrate that the validity of the FDTD implementation tech-
niques and that the high-order SIs do efficiently reduce the numerical dispersion. We first consider a calculation of the scat-
tering cross-section of a 100 nm radius infinite cylinder in the xy-plane with a refractive index of n = 3.0 illuminated with TEz

polarized light (i.e. the magnetic field is transverse to the xy-plane) in comparison to the analytical Mie theory result. A two-
dimensional computational domain 300 � 300 nm was discretized using the Yee spatial lattice with grid spacings of
Dx = Dy = 1 nm, and terminated with 20 layers of CPML. Spatial derivatives were approximated using second-order accurate
Taylor expansions. A Gaussian-damped sinusoidal pulse traveling in the +x-direction,
Fig. 2.
in comp
exp � ½t � ðx� x0Þ=c�2

2r2

 !
sinðx0tÞ; ð56Þ
where r is the width of the damping, x0 is the center position of the pulse at t = 0, and x0 is the center angular frequency, was
introduced into the computational domain using the TF–SF technique. The parameters in Eq. (56) were chosen such that the
pulse had wavelength content over the range of interest (k = 350–1000 nm): r = 0.11 fs and x0 = 600 nm. The scattering
cross-section was calculated by integrating the normal component of the Poynting vector around a closed surface encom-
passing the cylinder using the frequency-domain scattered fields, which were obtained by Fourier transforming the time-do-
main fields for 100 fs. The result calculated using SI.4 with h = 0.99hmax is shown in Fig. 2, where very accurate results are
seen. Fig. 2 is not meant to imply that the other SIs give significantly less accurate results (see below for a detailed compar-
ison), but rather that the FDTD implementation techniques work.

In order to demonstrate the ability of the high-order SIs to efficiently reduce numerical dispersion, we compared the ana-
lytical propagation of a narrow Gaussian pulse to the numerical result over a long distance. A 400 lm one-dimensional com-
putational domain was discretized using the Yee spatial lattice with grid spacings of Dx = 5 nm. Spatial derivatives were
again approximated using second-order accurate Taylor expansions. A Gaussian pulse traveling in the +x direction,
Eyðt; xÞ ¼ exp � ½t � ðx� x0Þ=c�2

2r2

 !
; ð57Þ

Bzðt; xÞ ¼
1
c

exp � ½t � ðx� x0Þ=c�2

2r2

 !
; ð58Þ
was inserted into the computational domain by specifying initial values of Ey and Bz, Eqs. (57) and (58), everywhere with t=0,
x0=200 lm, and r = 0.025 fs, chosen such that the pulse contained wavelength content down to �60 nm where extremely
high numerical dispersion was expected to occur. The simulation was stopped after 500 fs, upon which time the pulse had
only propagated �150 lm, and therefore no boundary truncation (e.g. CPML) was necessary. For all t, Ey and Bz are theoret-
ically specified everywhere in the computational domain by Eqs. (57) and (58). However, because of numerical dispersion,
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not all wavelength components of the pulse will propagate at the same speed, and thus over time its structure will deform. In
order to measure this deformation we looked at the energy of the error between the analytical and numeric pulses,
Fig. 3.
with (a
Z
1
2

eðEn
yðxÞ � Eyðnh; xÞÞ2 þ 1

l ðB
n
z ðxÞ � Bzðnh; xÞÞ2

� �
dx: ð59Þ
For the discretization under consideration, Eq. (59) becomes
Dx
XL

l¼1

1
2

eðEn
yðlDxÞ � Eyðnh; lDxÞÞ2 þ 1

l
ðBn

z ðlDxÞ � Bzðnh; lDxÞÞ2
� �

; ð60Þ
where L is the number of grid points. Absolute errors normalized by the incident energy with h = 0.95hmax for all of the SIs
discussed are shown in Fig. 3(a). It should be noted that measurements began after the pulse had propagated 10 fs to avoid
numerical errors associated the initial conditions (e.g. evanescent and �x directed wave components). For all SIs, the error is
seen to increase over time, as expected, and those associated with SI.3 and SI.4 are less than half that of SI.1 and SI.2. It is
interesting to observe what happens when h� hmax. This may correspond to a simulation with an inhomogeneous compu-
tational domain, where hmax differs by region. Fig. 3(b) shows the same situation as Fig. 3(a), except with h = 0.5hmax. The
errors associated with SI.1 and SI.2 are seen to dramatically decrease, whereas those of SI.3 and SI.4 remain relatively the
same (although still below SI.1 and SI.2). The high-order integrators are therefore particularly well-suited for maintaining
a minimal amount numerical dispersion in inhomogeneous computational domains. In order to directly compare the SIs,
the errors relative to the single step method (SI.1) were calculated, Fig. 4(a). As expected from Fig. 3, the error of SI.2 is al-
most identical to SI.1, whereas SI.3 and SI.4 have significantly less. In addition, although hard to discern from Fig. 4, the rel-
ative errors of SI.3 and SI.4 decrease over time. Multiplying the results in Fig. 4(a) by the efficiency in Table 2 gives an idea of
the error per computational effort, Fig. 4(b), and demonstrates that the high-order SIs efficiently minimize numerical
dispersion.
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7. Summary and conclusions

A discrete action principle for electrodynamics was derived, which was then used to construct explicit symplectic inte-
grators for Maxwell’s equations. The physically correct electrodynamics Lagrangian density, involving the vector and scalar
potentials, was used for our formulation, but it was demonstrated that the integrators could all be expressed entirely in
terms of the electric and magnetic fields. By combining discrete Lagrangians in an explicit symplectic partitioned Runge–
Kutta method, an integrator capable of achieving any order of accuracy was obtained. The numerical stability was shown
to be greatly increased and the numerical dispersion greatly decreased, compared to other methods, by using the high-order
integrators. Numerical examples were presented that demonstrate this, especially as the time-step is decreased from the
maximum stable time-step. These integrators are therefore particularly well suited for modeling the propagation of electro-
magnetic waves in inhomogeneous computational domains. We demonstrated that the integrators can be used along with a
lot of the standard embellishments of the finite-difference time-domain method, which were used for our numerical exam-
ples. However, the integrators are not limited to a finite-difference method, and we are currently implementing them using a
finite element approach.

The integrators presented here do not explicitly allow for dispersive materials, which would involve additional current or
polarization terms that would be coupled to the electric field. However, such behavior can be incorporated with our integra-
tors using a split-operator approach as used in Ref. [38], and we are currently investigating this and other approaches for
modeling these materials.

We are currently using the ideas presented here to construct symplectic integrators for other approaches in physics that
are based on Lagrangian mechanics, such as the Car–Parrinello molecular dynamics method [39] and time-domain density
functional theory [40].
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